¹⁸O(n,p) 1964Ch19

Type Author Citation Literature Cutoff Date

Full Evaluation R. Spitzer, J. H. Kelley ENSDF 30-Jun-2021

1964Ch19: ¹⁸O(n,p) was first measured using the Palo Alto Lockheed Missiles and Space Company Van de Graaff accelerator. The results confirmed the particle stability of ¹⁸N.

A beam of \approx 19 MeV neutrons, produced via the T(d,n) reaction, irradiated a 97% ¹⁸O enriched water sample for a second before it was transfered to a counting area where combinations of β - γ - γ coincidence events were collected for about five seconds using a pair of NaI γ -ray detectors and a plastic scintillator β -ray detector. Measurements with a ¹⁶O water sample were also collected so observations could be compared with the well-understood reaction to ¹⁶N. The β -spectrum was measured and a strong feeding of ¹⁸O*(4.45 MeV) was observed.

The β endpoint was investigated using γ - β coincidences; the $^{18}\text{N}^{-18}\text{O}$ mass difference was found as 13.9 MeV 4, implying Δ M=13.1 MeV 4. There is no evidence for a strong decay branch to $^{18}\text{O}_{\text{g.s.}}$. $T_{1/2}$ =0.63 s 3 was deduced from the γ -gated β -ray decay curve. The ground state spin was constrained as J=(0,1,2) $^-$ from analysis of $\log ft$.

2001KaZY: The 18 O(n,p) cross section was measured at E_n =14.94 MeV using activation techniques at the JAERI D-T neutron source. σ =1.15 mb I7.

¹⁸N Levels

E(level) $T_{1/2}$ Comments 0^{\dagger} 0.63 s 3 E(level): ΔM=13.1 MeV 4. $T_{1/2}$: From (1964Ch19).

[†] The ground state was later resolved as a doublet in ¹⁸O(⁷Li, ⁷Be) (1983Pu01).